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Abstract 

We investigate the asymptotic behaviours of the solutions to the initial-
boundary value problem of scalar viscous conservation law in two space 
dimensions, with two boundaries. By virtue of an elementary energy method, 
both the global existence and asymptotic convergence toward the planar 
stationary waves are obtained for such an initial-boundary value problem. 

1. Introduction and Main Results 

Consider the initial-boundary value problem on a two-dimensional 
domain, denoted by [ ] ( )∞+−∞× ,1,0  for convenience, for the following 
scalar viscous conservation laws: 
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(1.1) 

where ±u  is given constant, which satisfy ,+− < uu  and ( ) =yu ,00  

( ) ( ) ( )yuyuyu ,1,1,,0 0 +− =  for compatibility. We assume that 2, Cgf ∈  

and 

( ) 0>′′ uf  for u under consideration, (1.2) 

and the boundary data ( )ytu ,±  satisfies 
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We recall that the stationary wave ( )xφ  of (1.1) is the unique solution of 

the following problem: 

( ) ( )

( ) ( )
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uu

xf xxx
 (1.4) 

According to [17], we have the following Lemma 1 corresponding the 
existence of ( )xφ  to (1.4) for the non-degenerate case. 

Lemma 1. A necessary condition for the existence of solutions to the 
boundary value problem (1.4) is ( ) ,0≤′ +uf  we only consider the case 

( ) .0<′ +uf  If ,+− < uu  there exists a monotone increasing solution ( ),xφ  

such that 
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 (1.5) 

for some constant C and 0≥k  is an integer. 

As previous works, the asymptotic behaviour of the corresponding 
Cauchy problem in one-dimensional space was discussed in [1-6], etc. To 
the initial-boundary value problem for scalar viscous conservation laws 
in one-dimensional space, the asymptotic behaviour of solutions has been 
considered by many authors (see [7-9], [13]). 

This problem was also studied for the scalar viscous conservation 
laws in multi-dimensional whole space. For the related results, the 
interested reader is referred to [10, 14, 15, 16]. Whereas for the case of 
multi-dimensional conservation laws on half space, Kawashima et al.   
[11, 12] showed the asymptotic stability of stationary wave by using a 

weighted pL  energy method. 

The main purpose of our present manuscript is devoted to the 
asymptotic stability of stationary wave to the initial-boundary value 
problem for the scalar viscous laws, on a two-dimensional domain. We do 
that by observing the following boundary function: 

( ) ( ) ( )( ) ( ) ++−−−− −+−+−= uytuuytuuytuytE ,,,, 2  

( )( ) ( ( ) ) ( ( ) ) .,,, 222
t

ytu
t

ytuuytu
∂

∂
+

∂
∂

+−+ +−
++  (1.6) 

Notations. Throughout this paper, we denote [ ] ( )∞+−∞× ,1,0  by K, 

( )yx KK  denotes the projection of K in the x-direction (y-direction). 

( ) ( )∞≤≤= pFLL pp 1  denotes the usual Lebesgue space on F with it’s 

norm ( ) ,1, ∞≤≤= ∫ pdxxff p
FLp  and when ,2=p  we write 

1.2 HL ⋅=⋅  denotes Sobolev space with it’s norm == 11 ff H  

.222
yx fff ++  We also use symbols 
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( ) ( ),,,,,, 222
yxyyxxyx ∂∂∂∂∂∂=∇∂∂=∇  

,, 2222222
yxxyyyxxyx uuuuuuuu +++=∇+=∇  

and for simplicity, uu 2, ∇∇  are denoted by u∇  and ,2u∇  

respectively. 

Our main results are as follows: 

Theorem 1. Suppose that (1.2) and (1.3) hold, and that ( ) −yxu ,0  

( ) ,1Hx ∈φ  where φ  is the stationary solutions obtained in Lemma 1. 

Then there exists a unique global solution u of (1.1) such that 

([ ) ) ( ) ( ) ([ ) ),;,0,,;,0 121 HLuuHCu yx ∞∈φ−φ−∞∈φ−   (1.7) 

and 

( ) ( ) ( ) .,0,,sup , +∞→→φ−∈ tasxtyxuKyx   (1.8) 

To prove the convergence in Theorem 1, we need the following 
Lemma 2: 

Lemma 2 ([18]). Suppose that ( ) ( ) ( ) ( ),,0,,0 11 ∞∈′∞+∈ LtgLtg  then 

( ) .0lim =
∞→

tg
t

 (1.9) 

The rest of this paper is organized as follows: Section 2 is the proof of 
Theorem 1. 

2. Convergence to Stationary Solutions 

Now, we begin to prove Theorem 1. Let 

( ) ( ) ( ),,,,, tyxvxtyxu +φ=   (2.1) 

where φ  is the stationary solution obtain in Lemma 1. Then we can 

reformulate (1.1) as follows: 
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 (2.2) 

where ( ) ( ) ,0,,1,,,0 →tyvtyv  as .+∞→t  

Theorem 3. Assume that the same conditions as those in Theorem 1 

hold ( ),1
0 Hvso ∈  then exists a unique solution of (2.2) satisfying 

([ ) ) ([ ) ),;,0,,;,0 121 HLvvHCv yx ∞+∈∞∈   (2.3) 

and 

( )
( ) .,0,,sup

,
∞→→

∈
tastyxv

Kyx
  (2.4) 

Theorem 1 is a direct consequence of Theorem 3, Theorem 3 can be 
proved by combining the local existence together with a priori estimates. 
For any ,0>T  we seek the solution of (2.2) in the set of function 

( )TX M ,0  defined by 

( ) { ([ ] ) ([ ] );;,0,;;,0,0 121 HTLvvHTCvTX yxM ∈∈=  

( ) ( ] ;,,,0,,, ,1,0 +±∞== ∈∈∀+∞<∂∂<∞− ZnmTttyxv yx
n
y

m
x  

( ) }.sup 10
Mtv

Tt
≤

≤≤
 

We can easily show the local existence by a standard way, so we omit the 
details. What we have to do is to prove the following a priori estimates. 

Proposition 1 (A priori estimate). Suppose that v is a solution of 
(2.2) in ( )TX M ,0  for a positive constant T. Then there exists a positive C 

independing of T, such that 
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where 
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Proof. Let v be a solution of (2.2) in ( ).,0 TX M  First, multiplying 

(2.2)1 by v, we get 

( ) { ( ) ( ) } { ( ) ( ) }yy
v

xx
v

t vvdssgvvgvvdssfvvfv −−+φ+−−+φ+ ∫∫
+φ

φ

+φ

φ

2
2
1  

( ) ( ) ( )( ) .022 =+φφ′−φ−+φ++ xxy vvffvfv  (2.6) 

By the maximum principle, 1
0 Hv ∈  and (1.3) give 

( ) ,0,,,sup 0 TtCtyxv ≤≤≤   (2.7) 

where 0C  is a positive constant independent of T. Hence 

( ) ( ) ( )( ) ( ) ,2
1

2
1 2

0
2

xxx vDvyfvffvf φ≥φ′′=φφ′−φ−+φ  (2.8) 

where y is between φ  and ( ) .0min, 000 >′′=+φ +≤≤− +−
ufDv CuuCu  And 

(2.2) gives 

( ( )( ) ( ( ) ) ) .0=−−+φ ∫∫
+φ

φ
dyvvdssgvvg yy

v

R
 (2.9) 

Combine (2.8) and (2.9) together and integrate (2.6) over [ ] ×1,0  

( ) [ ],,0, t×∞+−∞  we can change (2.6) into 
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Since ( )⋅f  is bounded, 2I  can be estimated as 

( ) ( ) 11 ,,2 LL uytuCuytuCI −−++ −+−≤  

( ) ., 1LytEC≤   (2.11) 

Next, we have 1I  estimated by Sobolev’s inequality as follows: 

( ( ) ( )) τττ dydyvyvI xx
R

t
,,1,,0 22
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0 ∫∫µ≤  

[( ( ) ) ( ( ) ) ] τττ dyduyuuyuC
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t 22
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KLx
R

t 2
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2
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( ( ) ( ) ) ( ) ,, 1
222

0 L
t

ytECdvv +∇+∇µ≤ ∫ τττ  (2.12) 
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So, we obtain 

( ) ( ( ) ) τττ dvvv x
t 22
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2 ∇+φ+ ∫  
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0 1 ττ dvytEvC
t
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here µ  and 1µ  are sufficient small positive constant. Multiplying (2.6) by 

,v∆−  gets 

( ) ( ( ) ( )( ) ( ) ( )( ) )yxt gvgfvfvvv φ−φ++φ−φ+∆=∇+∇ 222
2
1  

( ) ( ) ( ) ( )yyxxxyxyxxtyyt vvvvvvvv 22 −+++  

 ,43210 FFFFF ++++=   (2.14) 

where 

( ( ) ( )( ) ( ) ( )( ) ),0 yx gvgfvfvF φ−φ++φ−φ+∆=  

( ) ( ) ( ) ( ) .2,2,, 4321 yyxxxyxyxxtyyt vvFvvFvvFvvF −====  

By Cauchy-Schwartz inequality and noticing that ( ) ( ) xgf φ⋅′⋅′ ,,  is 

bounded, one has 

( ( ) ( ) ( ) ( ) )yxxx vvgfvvfvfvF φ+′+φφ′−φ+′+φφ+′∆=0  

( ) ( ( ) ( ) ) 222222
2 vCvvgvvfCv xyx φ+φ+′+φ+′+∆µ≤  

( ) 222
2 vCvCv xφ+∇+∆µ≤  (2.15) 

.2222
3 vCvCv xφ+∇+∇µ≤  

Next, we use (2.2) and Sobolev’s inequality to estimate the ( ,3,2,1=iFi  

)4  as follows: 

[ ] ;0
1

00
1

1

00
== +∞=

−∞=∫∫∫∫∫ ττ dxdvvdxdydF y
yyt

t

R

t
 (2.16) 
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Here, ( )5,4,3,2=µ ii  are sufficient small positive constants. 

Combining (2.15)-(2.19) together and integrating (2.14) over [ ],,0 tK ×  

we obtain 

( ) ( ) τττ dvdxdydv
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Combining (2.14) and (2.23), we can easily obtain 
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t 2

1
2

0
2
1 ∇+φ+ ∫  

( ( ) )., 1
2
10 LytEvC +≤  (2.22) 

This completes the proof of the Proposition 1, so the global existence of 
the unique solution of (1.1) are obtained. 

Next, we are going to show ( ) ( ) ( ) KyxKyx tyxv ∈∈ = ,, sup,,sup  

( ) ( ) ,0,, →φ− xtyxu  as .∞→t  We need the following estimates: 
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and we continue to estimates each term of the right side of (2.23), 
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0
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0
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( ( ) ) 1111
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≤  

( ) ( ) ,2 tvtv y≤  (2.24) 

similarly, we get 

( ) ( ) ( ) .2,, 11
21

0
tvtvdxtyxv xyxx ≤∫  (2.25) 

So, we can now conclude that 

( ) ( ) ( ) ( ) ( )tvtvtvtvtyxv xyxx 22,,sup 2 +≤  

( ( ) ) ., 2
−− −+ uytu  (2.26) 
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Next, let ( ) ( ) ,2tvtg x=  then 
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checking (2.12) again, we have 
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by (2.23)-(2.28), 
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by (1.3), 
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by (2.2)1 and (2.5), 
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So ( ) ( ),
1

+
∈′ RLtg  thus, according to Lemma 2, ( ) ∞→∞→ = tt tg limlim  

( ) .02 =tvx  Moreover, by (2.24) and (2.26) ( ) ( )tvtv xy,  is bounded 

about t, therefore by virtue of (2.28), we finally have 

( )
( ) .0,,suplim
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=
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tyxv

Kyxt
 (2.32) 
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