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Abstract

We investigate the asymptotic behaviours of the solutions to the initial-
boundary value problem of scalar viscous conservation law in two space
dimensions, with two boundaries. By virtue of an elementary energy method,
both the global existence and asymptotic convergence toward the planar
stationary waves are obtained for such an initial-boundary value problem.

1. Introduction and Main Results

Consider the initial-boundary value problem on a two-dimensional
domain, denoted by [0, 1]x (=, +o) for convenience, for the following

scalar viscous conservation laws:
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w + fw), + 8w, =Au, (x,y)€(0,1)x (-0, +0), ¢ > 0;
wO, v, t)=u_(t, y) > u_, ul,y t)=u.t v)—>u.t—>+x), ¢t>0
u(x, 3, 0) = ug(x, y),  (x, ¥) [0, 1]x[0, 1],
(1.1)
where u, is given constant, which satisfy w_ < u,, and ug(0, y) =

u_(0, y), uo(1, y) = u, (1, y) for compatibility. We assume that f, g € C?

and

f"(u) > 0 for u under consideration, (1.2)

and the boundary data u, (¢, y) satisfies

u_(t, y)—u_, u,(t, y)—u, € 2
au’—(t7 y) au’+(t’ y) 2 1,

2 , 2 e I°NL; (1.3)
azuf(t’ y) , 82u+(t’ y) 1= Ll.

ot> ot>

We recall that the stationary wave ¢(x) of (1.1) is the unique solution of

the following problem:
f(¢)x = ¢xx’ X € (0’ 1)’
00) =u_,  6Q) = u,.

1.4)

According to [17], we have the following Lemma 1 corresponding the

existence of ¢(x) to (1.4) for the non-degenerate case.

Lemma 1. A necessary condition for the existence of solutions to the

boundary value problem (1.4) is f'(u,) < 0, we only consider the case
f'(uy) < 0. If u_ < u,, there exists a monotone increasing solution ¢(x),

such that



ASYMPTOTIC STABILITY OF PLANAR STATIONARY ... 3

k
| 20| < oy -y, (1.5)
ox

for some constant C and k > 0 is an integer.

As previous works, the asymptotic behaviour of the corresponding
Cauchy problem in one-dimensional space was discussed in [1-6], etc. To
the initial-boundary value problem for scalar viscous conservation laws
in one-dimensional space, the asymptotic behaviour of solutions has been
considered by many authors (see [7-9], [13]).

This problem was also studied for the scalar viscous conservation
laws in multi-dimensional whole space. For the related results, the
interested reader is referred to [10, 14, 15, 16]. Whereas for the case of
multi-dimensional conservation laws on half space, Kawashima et al.

[11, 12] showed the asymptotic stability of stationary wave by using a
weighted L? energy method.

The main purpose of our present manuscript is devoted to the
asymptotic stability of stationary wave to the initial-boundary value

problem for the scalar viscous laws, on a two-dimensional domain. We do

that by observing the following boundary function:

E(t’ y) = |u,(t, y)_ u7| + (u,(t, y)_ u7)2 + |u+(t’ y)_ u+|

ou(t, ) o , (uslt 9) y2. (1.6)

+(u+(t’ y)_u+)2 +( ot ot

Notations. Throughout this paper, we denote [0, 1] x (-, +x) by K,
K, (K,) denotes the projection of K in the x-direction (y-direction).

I[P = [”(F) (1 < p < w) denotes the usual Lebesgue space on F with it’s

norm | f|;» = IFl f(x)|? dx,1< p <o, and when p =2, we write

I-l;z =][- H' denotes Sobolev space with it'’s norm | f |z = | £, =

JIFI 1 £ 12 +1 £, . We also use symbols
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V= (0, 8y), V% =(0%, 0,0y, 0,0, 02),

xCy>
| Vu| = ,/uz +u3, |V2u| = u%x +u§y +u92cy +u§x,
and for simplicity, || Vul|, || V2u||| are denoted by || Vu| and | vZu [l
respectively.

Our main results are as follows:
Theorem 1. Suppose that (1.2) and (1.3) hold, and that ug(x, y) -

d(x) e H', where ¢ is the stationary solutions obtained in Lemma 1.

Then there exists a unique global solution u of (1.1) such that
u—¢eC0,0); H'), (u-9),, @-09), e L*([0,); H'),  (1.7)
and
sup(x,y)e[d u(x, y,t)—d(x)| > 0, as t - +on. (1.8)

To prove the convergence in Theorem 1, we need the following

Lemma 2:
Lemma 2 ([18]). Suppose that g(t) € Ll(O, +o), g'(¢) € L0, ), then

lim g(1) = 0. (1.9)

The rest of this paper is organized as follows: Section 2 is the proof of

Theorem 1.
2. Convergence to Stationary Solutions

Now, we begin to prove Theorem 1. Let
u(x, y,t) = ¢(x) + v(x, ¥, t), (2.1)

where ¢ is the stationary solution obtain in Lemma 1. Then we can

reformulate (1.1) as follows:
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v + (F(0 +0) = £(9)), + (8 +v) - 8(9)), = Ay,

(x, ¥) € (0, 1) x (o0, +0), ¢ > 0;
(2.2)
U(O’ y’ t) = uf(t’ y)_ u_, U(l’ y’ t) = u+(t9 y)_ u+’ l 2 O’

u(x, ¥, 0) = vp(x) = up(x, y) = d(x), (x, ¥) € [0, 1] x (=o0, +00),
where v(0, v, t), v(1, y,t) > 0, as t - +o.

Theorem 3. Assume that the same conditions as those in Theorem 1

hold (sovy € H'), then exists a unique solution of (2.2) satisfying

ve ([0, ); HY), w,, vy € L2([0, +); HY), 2.3)
and
sup |u(x, y,¢)| > 0, as t - oo. (2.4)
(x,5)eK

Theorem 1 is a direct consequence of Theorem 3, Theorem 3 can be
proved by combining the local existence together with a priori estimates.

For any T > 0, we seek the solution of (2.2) in the set of function

X7(0, T) defined by
X0, T)={vec(o,T]; H); v,, vy € *([o, T]; H');
- < dy'du(x, y, t) |x:0,1,y:ioo <+, Vte(0,T],mneZ,;
Sum o0y < 1)

We can easily show the local existence by a standard way, so we omit the

details. What we have to do is to prove the following a priori estimates.

Proposition 1 (A priori estimate). Suppose that v is a solution of

(2.2) in X7(0, T') for a positive constant T. Then there exists a positive C
independing of T, such that
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LI + [ (o) 2+ 7ot ) ar

< Clvo [F +1 B ») ) (2.5)
where
E(t, y) = |u_(t, ) —u_| + @_(t, ¥) - u_)* +|us(t, ¥) - uy | + (et ¥) - uy )

o ( au_ﬁ(i, y) 2+ ( auéi, y) 2,

Proof. Let v be a solution of (2.2) in X,;(0, T'). First, multiplying

(2.2)1 by v, we get
o+v o+v
(50 + 110+l = [ 7 f(0)ds ool + {glo s o = [ 7 glo)ds ~uyol,

+ 05+ (f(&+ ) = f9) - F(O)s + vy = 0. (2.6)
By the maximum principle, vy € H ! and (1.3) give
supfu(x, y, t)| < Cy, 0<t<T, 2.7

where Cj is a positive constant independent of 7. Hence

(F6+0) = F8) - F@0)x = 3 (W% > 5 Doy, 2.9

where y is between ¢ and ¢ +v, Dy = min, _cy<us<u, +C, f"(u) > 0. And

(2.2) gives
J ((g(d) U))v (J‘ ¢+vg(s)ds —-U U) )dy =0 (2.9)
R ¢ Yoy ’ '

Combine (2.8) and (2.9) together and integrate (2.6) over [0, 1]x

(~o0, +0) x [0, t], we can change (2.6) into
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t t
[ + [ e + vy Par + €[ {oco) P yar

< I + I + C|v(0) |, (2.10)

where

h= J ;f G003, 70, 3, 7 [+ [ L, 3, (L, 9, 7) [Hdyer,
! w,(7,y)
=[] e )=+ [ s avar

t u_(t,y)
+ IOJR{| (u(r, y) - u )f(w )| +| ju " f(s)ds |} dydr.

Since f(-) is bounded, I5 can be estimated as
Iy < Clu,(t, y)—uy | +Clu_(t, y)-u_|g
< C|EG, y) |- (2.11)

Next, we have I; estimated by Sobolev’s inequality as follows:

t
I < ”IOIR(U’%(O’ ¥, )+ vz(l, ¥, 7))dydr
t 9 9
+ Cuj J (v*(0, y, T) + v*(1, y, T))dydT
0d R
t
< 2“!0.[3" ve (%, 35 ) 2k, ) 02 (0 30 )12, Ay T

G [l 9=+ (ur 3) - P Jdn

IA

t t
2 2
dyd dyd
HJOJR" Ux(x’ ya T) "LZ(Kx) y T+ MIOIR" vxx(x, y’ T) "LZ(Kx) y T

IA

t
u j N( V20(r) |2 + | Vo(r) | )dr + €| B, )]0, (2.12)
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So, we obtain

L@+ [ owo) [ + 190

t
< Clluo IF +1 B 3)p +w [ [V Par). @13)

here p and p; are sufficient small positive constant. Multiplying (2.6) by
— Av, gets

(51 V0 )+ V2 = Aul(F(w + )~ FO)), + (80 + )~ £(6),)
4 (0ry )y + (00 )y + 20gy0, ), — 2oty ),
= Fy+F, +Fy+F3 +Fy, (2.14)
where
Fy = Ao((f(0 + 6) ~ F@), + (v + )~ £(0)), ).
B o= (uwy),s Fy=(uog)ys Fs = 20gvy)p,  Fy = —2vg0,),.

By Cauchy-Schwartz inequality and noticing that f'(), g'(), ¢, is

bounded, one has

Fy = Av(f’(v + ¢)¢x + f,(v + (I))Ux - f,((l))d)x + gl(v + (I))Uy)

IA

o (Av)? + C(f2( + 2 + g2 (v + o) + Cp, v

o (Av)? + C| Vu |? + Co 0 (2.15)

IN

us| VZl? + ¢ Vo |* + Cp .

IA

Next, we use (2.2) and Sobolev’s inequality to estimate the F;(i =1, 2, 3,

4) as follows:

t 1 t el
J J J' Fdxdydr = J' J oy = dxdr = 0; (2.16)
0JRJIO 0J0



ASYMPTOTIC STABILITY OF PLANAR STATIONARY ... 9

t 1 t 1
J J J' Fydxdydr = J' J' J' Fydxdydr = 0; 2.17)
0JRJO 0J RJO

t 1 tel .
II I Fydxdydr = J J [v,0, F=) dydr
0JRJIO 0J0

I I Cvt +u4vx dyd'r
similar to (2.12),

t el ~
Jo Jo [Cvt2 + Mv% ]i;édydT

< (1 2D ) Py [T P+ 90 )

t t
< ClEt, y) | + “5Io" v2(7) [2dr + ps j Vo) P 2.19)

Here, u;(i = 2, 3, 4, 5) are sufficient small positive constants.

Combining (2.15)-(2.19) together and integrating (2.14) over K x [0, t],

we obtain

t 1 t
3| [ [ (vvPydedyar + | 9200 Par
0JRJIO 0

t t
< (g + s )IO | V2u(r) |Pdr + C j Ve P+ ClEC D) g, @20
thus we have

1900 + [ | v2u(r) Par

t
< Cllogy P + Clooy P +C| E, ») | + cjou vo(r) [P dnr. (2.21)

Combining (2.14) and (2.23), we can easily obtain
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t
Fo® 1 + [ (Voo P+ Vot [ e

< C(lvo [F +[ EE »)|p)- (2.22)

This completes the proof of the Proposition 1, so the global existence of

the unique solution of (1.1) are obtained.
Next, we are going to show sup(y ,jex|v(x, ¥, t)| = sup(y y)ex

|u(x, y,t) - ¢(x)| > 0, as ¢ — . We need the following estimates:

X
Uz(xa Y, t) = 2.[ %U2(x1’ Y, t)dxl + (u—(t’ y)_ u—)z
0

1y 1y 2
< J.Ov (x1, ¥, t)dx; +jovx(x1, v, t)dx; + (u_(t, y)—u_)”,

(2.23)
and we continue to estimates each term of the right side of (2.23),
1 Yy 2 1
_[ v?(xy, ¥, t)dx; = J. —(I v?(x1, ¥1. t)dxy )dyy
0 -0 0y J0
y 1
< ZJ (I0|vvy|(x1, ¥1, t)daxy )dy
< 2[v@) [ vy ©1, (2.24)
similarly, we get
1 2
jo v2(xy, 3, £)dxy < 2] vy ()| vay @) - 2.25)

So, we can now conclude that
supv?(x, 3, 1) < 2] v(®) [ e )] + 2] 0O [ vy O]

+(u(t, y)-u ) (2.26)
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Next, let g(t) = || v, (2) ||2, then

, 400 o1 9 +o0 1
g'(t) = (I -[0 ve(x, y, t)dxdy), = 2I IO U Uy (%, ¥, t)dxdy
+0o0 =1 +o00 o1
=2 ot n OFThdy -2 | vnule 3. t)dxdy
+00 9 92
<2 (o)) 2y ) - )y

+00 9 9 +oo 1
+ 2J. (v, y, )+ v5(0, v, t))dy — 2I j Uiy (2, y, £)dxdy,
—o -0 J 0

(2.27)
checking (2.12) again, we have
2-[ +oo(1)3%(1, v, t)+ v%(O, y, t))dy < C(| V2v(t)| +| Vu(?) |2 ), (2.28)
by (2.23)-(2.28),
T 9 2 1
2I_w (030 3, 0)+ 020, 3, )dy € Ty |, (2.29)
by (1.3),
2(u(t, y)—u ) + 2uy b, ) - u. ) e L, (2.30)
by (2.2)1 and (2.5),
+oo 1
I j Uy Vg (%, 3, t)dxdy € L}R ) (2.31)
—00 0 +

So g'(t) e L}IL)’ thus, according to Lemma 2, lim; ., g(t) = lim;_,,
[ vy (2) ||2 = 0. Moreover, by (2.24) and (2.26) | v(t)|, || vy, ()| is bounded
about ¢, therefore by virtue of (2.28), we finally have

lim sup |v(x, y,t)|=0. (2.32)
K

t—o (x’ y)e
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